Exact solution of the staircase and row-convex polygon perimeter and area generating function
نویسندگان
چکیده
An explicit expression is obtained for the perimeter and area generating function G(y, z) = ∑ n>=2 ∑ m>=1 cn,my z, where cn,m is the number of row-convex polygons with area m and perimeter n. A similar expression is obtained for the area-perimeter generating function for staircase polygons. Both expressions contain q-series.
منابع مشابه
Exact perimeter generating function for a model of punctured staircase polygons
We have derived the perimeter generating function of a model of punctured staircase polygons in which the internal staircase polygon is rotated by a 90° angle with respect to the outer staircase polygon. In one approach we calculated a long series expansion for the problem and found that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of o...
متن کاملThe exact perimeter generating function for a model of punctured staircase polygons
We have derived the perimeter generating function of a model of punctured staircase polygons in which the internal staircase polygon is rotated by a 90◦ angle with respect to the outer staircase polygon. In one approach we calculated a long series expansion for the problem and found that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of o...
متن کاملExact Solution of Two Planar Polygon Models
Using a simple transfer matrix approach we have derived long series expansions for the perimeter generating functions of both three-choice polygons and punctured staircase polygons. In both cases we find that all the known terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We report on an analysis of the properties of the differential equ...
متن کاملq-linear approximants: scaling functions for polygon models
The perimeter and area generating functions of exactly solvable polygon models satisfy q-functional equations, where q is the area variable. The behaviour in the vicinity of the point where the perimeter generating function diverges can often be described by a scaling function. We develop the method of qlinear approximants in order to extract the approximate scaling behaviour of polygon models ...
متن کاملPolygonal polyominoes on the square lattice
We study a proper subset of polyominoes, called polygonal polyominoes, which are defined to be self-avoiding polygons containing any number of holes, each of which is a self-avoiding polygon. The staircase polygon subset, with staircase holes, is also discussed. The internal holes have no common vertices with each other, nor any common vertices with the surrounding polygon. There are no ‘holes-...
متن کامل